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Abstract— This paper presents a fault tolerant multisensor
strategy for feedback control of a class of nonlinear systems
upon a geometrical approach. A key point to ensure fault
tolerance is the separation between healthy and faulty closed-
loop behavior. Here we achieve this through set theoretic
operations upon sets describing the healthy/faulty behavior of
the system. The results rely both on an appropriate choice
for the exogenous signals and on fixed point conditions for
a nonlinear mapping which describes the gap between the
nonlinear system and a linearized model in the functioning
interval. A reference governor is employed such that, under a
receding horizon technique, only feasible exogenous signals are
provided to the system.

I. INTRODUCTION

Nowadays the use of redundant sensors in applications
is becoming ubiquitous. In modern applications there are
strict requirements on the stability and performance cri-
teria. Malfunctions in actuator, sensors or other systems
components might lead to unsatisfactory performance or
even instability. There are safety-critical systems in which
this behavior is not merely inconvenient but can become
catastrophic (well known examples of malfunctioning in
aircraft incidents are discussed in [1]). As a consequence,
a great deal of effort has been put into developing closed-
loop systems which can tolerate faults, while maintaining
desirable performance and stability properties [2]. Any fault
tolerant control (FTC) scheme relies on two fundamental
mechanisms, the fault detection and isolation (FDI) and the
control reconfiguration mechanisms. The solutions employed
usually implement active FTC schemes which react to a
detected fault and reconfigure the control actions so that
stability and performance can be satisfied.

Lately, set membership techniques for fault detection were
proposed in the literature. In [3] parameter variances and
bounded disturbances are considered in order to obtain a ro-
bust detection of faults. A new approach was proposed in [4],
which uses a deterministic description of the sensor behavior
in order to obtain fault tolerance guarantees upon invariant
set separation. The approach utilizes bounded disturbance
and noise descriptions, and derives a switching control which
ensures closed-loop fault tolerant stabilization.

In the present paper, the technique is extended to systems
with nonlinear dynamics, a reference governor employing a
receding horizon optimization procedure to deliver a refer-
ence which permits fault detection, and a switching scheme
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enhanced to include all healthy sensors in designing the
control action. The basic ingredients for the fault tolerant
design are adapted to this general case as follows:

• Bounds for the region of ultimate convergence with
respect to a pre-stabilizing control law are obtained
(using the results in [5]) in order to construct sets
associated to the healthy and faulty sensor behavior.

• The reference signals are provided through a reference
governor which uses receding horizon techniques [6].

• Once the separation is achieved, the switch between the
estimations can be handled using on-line optimization.

The following notations will be used throughout the paper.
N denotes the set of non negative integers; N+ denotes the set
N \{0}. Whenever time is unspecified, a variable x stands
for x(k) for some (unspecified) k ∈ N, x+ stands for the
successor variable, that is, x(k+1). Inequalities and absolute
values of vectors and matrices are taken elementwise.

II. PROBLEM STATEMENT

Consider the problem of trajectory tracking for the
discrete-time nonlinear system

x+ = f(x) +Bu+ w (1)

where x ∈ IRn is the state, u ∈ IRm is the control input,
w ∈ IRn is an additive noise bounded as |w| ≤ w̄ , f :
IRn → IRn and B ∈ IRn×m is a constant matrix. In this
nonlinear setting, the tracking problem implies the existence
of a reference state trajectory x̄(k) and a reference control
action ū(k) that satisfy

x̄+ = f(x̄) +Bū (2)

and are provided by a reference governor (R.G.), as shown
in Figure 1. In the following sections we will design a fault
tolerant control scheme based on the following assumption:

Assumption 1: The reference trajectories (x̄, ū) are
bounded, that is, x̄(k) ∈ X̄ , ū(k) ∈ Ū for all k ≥ 0, where
X̄ ⊂ IRn and Ū ⊂ IRm are compact sets. �

Then, a stabilizing controller can be designed for the
dynamical system describing the tracking error

z+ = F (z, x̄) +Bv + w (3)

with variables z = x− x̄ and v = u− ū, where

F (z, x̄) , f(z + x̄)− f(x̄). (4)
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Fig. 1: Multisensor scheme with plant P , sensors Si, estimators Ei and feedback gain K. The shaded blocks are the reference
governor (R.G.) and the switching mechanism (SW)

For further use we consider F as a decomposition of
linear1 and nonlinear components, thus rewriting (3) as:

z+ = Az +Bv + γ(z, x̄) + w

γ(z, x̄) , F (z, x̄)−Az
= (f(x)−Ax)︸ ︷︷ ︸

θ(x)

− (f(x̄)−Ax̄)︸ ︷︷ ︸
θ(x̄)

(5)

Different combinations of plant states are measured via a
family of N sensors, as illustrated in Figure 1. We denote
by I , {1, . . . , N} the set of all sensor indices.

Definition 1 (Healthy sensor): The ith sensor, for i ∈ I,
is healthy if its output yi ∈ IRpi is given by

yi = Cix+ ηi, (6)

where ηi ∈ IRpi is a bounded measurement disturbance
satisfying ηi ∈ Ni ⊂ IRpi . �

Definition 2 (Faulty sensor): The jth sensor, for j ∈ I, is
faulty if its output is given by

yj = ηFj , (7)

where ηFj is a bounded measurement noise satisfying ηFj ∈
NF
j ⊂ IRpi , uncorrelated with the system’s states. �

The sensors supply information which can be used for the
estimation of the state. Assuming that the pairs (A,Ci)
are detectable for i = 1, . . . , N , we can use the following
estimators:

x̂+
i = Ax̂i +Bu+ θ(x̄) + Li(yi − Cix̂i), (8)

where the gains Li are such that A − LiCi are Schur
matrices (their eigenvalues are strictly inside the unit circle).
The nonlinear term θ(x̄) (see (5)) is introduced in order to
counteract the nonlinearity of the plant model.

1Obtained for example as a first term of a Taylor expansion around an
equilibrium point x0: A =

∂f(x)
∂x

∣∣∣
x=x0

An estimation update is considered in order to acknowl-
edge the failure of a sensor at the very moment of occurrence

x̂UPi = x̂i +Mi(yi − Cix̂i) (9)

with matrix Mi ∈ Rn×pi arbitrarily taken (the usual choice
being Mi = A−1Li). Additionally, we define the updated
estimation tracking error for further use in the control action:

ẑUPi = x̂UPi − x̄ (10)

For all estimators (8) taking measurements (6) from
healthy sensors, the dynamics of the estimation error x̃i ,
x− x̂i can be expressed, using (1), (5), (6) and (8), as

x̃+
i = (Ax+Bu+ θ(x) + w)

− (Ax̂i +Bu+ θ(x̄) + LiCix̃i + Liηi)
= (A− LiCi)x̃i + γ(z, x̄) + w − Liηi. (11)

In the present paper we consider the regulation loop to
have a fixed feedback gain2 v = −KẑUPl , for some l ∈ I
determined from a switch among any of the estimations
associated with healthy sensors. The tracking error then
satisfies

z+ = Az −BKẑUPl + γ(z, x̄) + w

= (A−BK)z +BK(I −MlCl)x̃l
−BKMlηl + γ(z, x̄) + w. (12)

In the following sections we will establish conditions that
one has to impose in order to assure the selection of healthy
estimations in the presence of faults.

III. INVARIANT SET CONSTRUCTION

To compute invariant sets we will use the ultimate bounds
construction. This construction provides a computationally
inexpensive description of robust positive invariant (RPI)

2K chosen such that A−BK is a Schur matrix.
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(13)

sets associated to a dynamical system affected by additive
bounded disturbances ([5], [7], [8]).

Theorem 1: Consider the system ξ+ = Φξ + γ(ξ) + w,
where ξ ∈ IRn, |w| ≤ w̄ and Φ ∈ IRn×n has its eigenvalues
strictly inside the unit circle and Jordan canonical form Λ =
V −1ΦV . Suppose that a continuous map δ : IRn

+,0 → IRn
+,0

exists such that |γ(ξ)| ≤ δ(|ξ|) and |ξ1| ≤ |ξ2| ⇒ δ(|ξ1|) ≤
δ(|ξ2|). Consider the map T : IRn

+,0 → IRn
+,0 defined by

T (ξ) = |Λ|ξ + |V −1| [δ(|V |ξ) + w̄] . (14)

Suppose that a fixed point b exists for T (ξ). Then the set

S = {ξ : |V −1ξ| ≤ b} (15)

is invariant.
Proof: The proof follows the lines of Theorem 4 in [5].
It can be observed that equations (11)–(12) are interde-

pendent and they cannot be decoupled as is the case for
linear dynamics (see [4]). Thus, for the class of nonlinear
dynamics in (1), the construction of invariant sets has to
be performed in the augmented tracking error + estimation
error state space. Denoting the augmented state vector by

ζI ,
[
zT . . . x̃Ti . . .

]T
, i ∈ I, (16)

we have that the augmented dynamics satisfy (13) where AI
is a Schur matrix and l ∈ I is the index of the estimation
selected by the switching mechanism for the construction of
the feedback control action.

Assumption 2: There exists a continuous map δ : IRn
+,0 →

IRn
+,0 satisfying |z1| ≤ |z2| ⇒ δ(|z1|) ≤ δ(|z2|) such that
∀z ∈ IRn, |γ(z, x̄)| ≤ δ(|z|), ∀x̄ ∈ X̄ . �

Remark 1: Using Assumption 2, it can be shown that the
function

δI(ζI) ,
[
(δ(z) + max

i∈I
|BK(I −MiCi)|x̃i)T , δ(z)T , . . . ,

. . . , δ(z)T
]T

(17)

satisfies |ζI1| ≤ |ζI2| ⇒ δI(|ζI1|) ≤ δI(|ζI2|) and,
moreover, γI(ζI , x̄) defined in (13) can be bounded as

|γI(ζI , x̄)| ≤ δI(|ζI |), ∀x̄ ∈ X̄. (18)

In addition, using the bounds w̄ for the disturbance term w
in (1) and the bounds on the measurement noises described
in Definitions 1 and 2, we have that the disturbance signal
wI defined in (13) can be bounded, for k = 0, 1, . . . , as

|wI(k)| ≤ w̄I ,
[
w̄T . . . η̄Ti . . .

]T
. �

We are now ready to use Theorem 1 to construct an
invariant set for the augmented system (13).

Proposition 1: Let AI = VIΛIV −1
I be a Jordan de-

composition of AI defined in (13) and suppose the map
TI : IR(N+1)n

+,0 → IR(N+1)n
+,0 defined as

TI(ζ) = |ΛI |ζ+ |V −1
I |δI(|VI |ζ)+max

l∈I
|V −1
I EI,l|w̄I (19)

with EI,l defined in (13) and δI , w̄I defined in Remark 1,
has a fixed point bI . Then, the set

SI =
{
ζI :

∣∣V −1
I ζI

∣∣ ≤ bI} (20)

is invariant for the closed-loop system (13) resulting from
the switching control law v = −KẑUPl , l ∈ I. �

Using (16), projections on the tracking error and the
estimation error spaces result, respectively, in the sets

Sz =
[
I 0 . . . 0︸ ︷︷ ︸

N

]
SI ; S̃i =

[
0 0 . . . I . . . 0︸ ︷︷ ︸

N

]
SI ,

which are such that z remains in Sz and x̃i remains in S̃i,
for i ∈ I, whenever ζI belongs to the invariant set SI .

IV. FAULT TOLERANT SCHEME

A. Separation principle for FDI

In the current paper we propose a control scheme which
is fault tolerant to sensor outages. Consequently we will
use a fault detection and isolation mechanism that will
acknowledge a faulty sensor and will remove it from the pool
of available sensors for the reconfiguration of the control law.

We require the detection of faults to be robust with respect
to the bounded/state-dependent disturbances considered. As
such, we will see that the signals of interest are restricted
to either “healthy” or “faulty” polytopic sets, denoted as
RHi and RFi , respectively. These sets will be computed in
an offline procedure and the actual fault detection reduces
itself to a fast online set membership evaluation which will
differentiate between the healthy/faulty cases as long as the
separation condition

RHi ∩RFi = ∅, ∀i ∈ I (21)

is verified. The variables and associated sets used for ac-
knowledging the fault occurrence can be chosen through a
variety of methods. In the following we present a method
which constructs an appropriate residual signal [9] sensitive
to fault occurrences. Indeed, the presence of a fault implies a
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modification in the sensor output, as shown in Definitions 1
and 2, which will manifest itself in the residual signal

ri = x̂UPi − (I −MiCi) x̂i (22)

composed from measurable quantities associated to the ith

sensor. From Definitions 1 and 2 the following forms are
obtained for the healthy and faulty cases, respectively:

rHi = MiCi(z + x̄) +Miηi (23)
rFi = Miη

F
i (24)

The fault detection reduces then to the study of the
sets RHi and RFi of all the possible values in the healthy,
respectively faulty, case of the residual signal:

RHi = MiCiSz ⊕MiCiX̄ ⊕MiNi

RFi = MiN
F
i (25)

If sets (25) do not overlap (i.e., conditions (21) hold,
which can be verified by an offline analysis) one can always
guarantee fault detection at the moment of occurrence. Note
also that the online test reduces itself to a low complexity
set membership evaluation and that a priori knowledge of
the current value of the reference signal x̄ is not required.

Remark 2: If 0 ∈ NF
i then the separation of the sets (25)

is achieved by means of an offset in the reference signal (2)
which implies the existence of an offset for the polytopic
set X̄ in Assumption 1. We can then define a maximal
admissible region in which the reference signal x̄ can take
values:

X̄max = {x̄ : (21) are verified for all i ∈ I} (26)

Note that, although we require X̄ ⊆ X̄max, the set X̄ may
not always be chosen to be equal to X̄max since this may
adversely affect the nonlinear term γ(z, x̄), rendering the
invariant set computation more difficult (i.e., the iterative
application of map (19) may not converge to a fixed point).�

B. Fault tolerance guarantees

With the FDI mechanism outlined in Subsection IV-A we
are now ready to treat the appearance of a fault.

Theorem 2: Consider the multisensor scheme described in
Section II and the associated sets RHi and RFi defined as in
Subsection IV-A. Suppose RHi ∩RFi = ∅ for all i ∈ I and let
the initial augmented state ζI(0) in (13) satisfy ζI(0) ∈ SI .
If at all future instants there exists at least one sensor which is
healthy (in order for the switching mechanism to have at least
one choice), then there exists a control law that preserves the
invariance of the signals corresponding to the sensors that
remain healthy (as per Definition 1).
Proof: Let the set I be split in two disjoint sets I =
H(k)∪F(k) corresponding to indices of healthy and faulty
sensors, respectively, at each sampling time k > 0. Since
ζI(0) ∈ SI by assumption, we then initialize the multisensor
scheme with H(0) = I. At each k > 0, the control law
v(k) = −KẑUPl (k), l ∈ H(k) is applied and there exist
“fictitious” values for x̃j(k),∀j ∈ F(k) (e.g. x̃j(k) = 0)
such that the extended vector ζI(k+ 1) ∈ SI . Recalling the

definitions (25) of the “healthy/faulty residual sets” RHj , R
F
j ,

fault detection is then immediate by using property (21) that
RHj and RFj are disjoint. Indeed, the detection mechanism
has to update the set F(k+1) = F(k)∪{j} for all indices j
which satisfy rj(k) ∈ RFj . Finally, H(k+ 1) = I \F(k+ 1)
and the proof is complete.

We observe that the hypothesis that ζI(0) ∈ SI (which
prompts us to initialize H(0) = I) is not restrictive, any
combination I = H(0)∪F(0) withH(0) 6= ∅ can be handled
similarly.

C. Control law design

The design of the control law u = ū + v consists of the
separate construction of both feedforward (ū) and feedback
(v) control actions for the system.

The feedforward action is provided by the reference gov-
ernor, which has to choose a feasible reference signal (such
that (21) will be verified) and, at the same time, follow an
ideal reference as close as possible. This problem can be cast
as the optimization of a cost function under constraints, and
it will be solved here in a model predictive control (MPC)
formulation:

ū∗(k) = argmin
ū(k),...,ū(k+τ)

i=τ∑
i=0

(||r(k + i)− x̄(k + i)||Qr

+||ū(k + i)||Rr )

subject to:

x̄(k + i+ 1) = f(x̄(k + i)) +Bū(k + i)
x̄(k + i) ∈ X̄max (27)

where r ∈ IRn is the ideal reference to be followed, τ is the
prediction horizon, and Qr ∈ IRn×n and Rr ∈ IRm×m are
weighting matrices. The feedforward control action is then
set to ū = ū∗(k).

A refinement can be applied if we use the information
provided by the sensors to estimate the tracking error at the
current time, by employing a technique described in [10]:

Lemma 1: The tracking error of the plant is described at
the current time instant k by the set

ZH(k) =
⋂

l∈H(k)

({
ẑUPl

}
⊕ (I −MlCl)S̃l ⊕ (−MlNl)

)
(28)

Proof: The tracking error is rewritten as a sum of unmea-
surable disturbances and the measurable updated estimation
tracking error associated with any healthy sensor l:

z = ẑUPl + (I −MlCl)x̃l −Mlηl (29)

Considering the sets that define x̃l and ηl one obtains that

z ∈
{
ẑUPl

}
⊕ (I −MlCl)S̃l ⊕ (−MlNl) (30)

and taking into account all the values proposed by the
acknowledged healthy sensors it follows that z belongs to
the set defined in (28), thus concluding the proof. �

Thus, at the current instant k, the tracking error will reside
in Sz ∩ ZH(k) and then the optimization problem (27) can
be reformulated as:
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ū∗(k) = argmin
ū(k),...,ū(k+τ)

i=τ∑
i=0

(||r(k + i)− x̄(k + i)||Qr
+

||ū(k + i)||Rr )

subject to:

x̄(k + i+ 1) = f(x̄(k + i)) +Bū(k + i)
Mj

{
Cj {x̄(k + i)} ⊕ Cj(Sz ∩ ZH(k+i|k))⊕Nj

}
∩MjN

F
j = ∅, ∀j ∈ I (31)

where ZH(k|k) = ZH(k) is the set defined in (28) and
ZH(k+i|k) for i ≥ 1 is a prediction of ZH(k) based on the
prediction of the updated estimation tracking error ẑUPl .

A few remarks concerning the computational aspects are
in order:

Remark 3: Problem (31), although less conservative than
(27), is difficult to implement since it requires the prediction
of the updated tracking errors ẑUPl . Due to noise presence
the future values will be set-valued and, in consequence, (28)
will increase exponentially, reducing the degree to which it
is relevant in approximating the tracking error. �

Remark 4: Even when the sets Ni, NF
i and Sz employed

in (21) to describe the residuals sets are convex and contain
the origin, X̄max will in general be nonconvex. This will
involve solving the problem (27) in the framework of mixed-
integer logic. �

We now turn to the feedback component v of the control
action u = ū + v. As mentioned before, one alternative is
to use a switching among the healthy updated estimation
tracking errors. The following Lemma with prove that the
choice of the feedback control law by switching between
the healthy estimations can be relaxed to any point residing
inside their convex hull.

Lemma 2: Any convex combination of healthy updated
estimation tracking errors used to construct the control action
will preserve the invariance of the tracking error set Sz .
Proof: Consider a convex combination of healthy updated
tracking errors zUP∗ =

∑
l∈H

αlẑ
UP
l , with

∑
l∈H

αl = 1, αl ≥ 0.

Applying v∗ = −KzUP∗ in (5) we obtain

z+ = Az −BKzUP∗ + γ(z, x̄) + w

= Az −BK
∑
l∈H

αlẑ
UP
l + γ(z, x̄) + w

=
∑
l∈H

αl
(
Az −BKẑUPl + γ(z, x̄) + w

)︸ ︷︷ ︸
z+l

(32)

where, by z+
l we denoted the next value of the tracking error

if at the current moment the control action was provided
by the lth sensor. As it can be seen, z+ will be a convex
combination of interior points z+

l of Sz (by the invariance
property) and, as a consequence, will be itself inside the
set, since by construction (see (20)) the sets SI and Sz =[
I 0 . . . 0

]
SI are convex, thus concluding the proof.�

Using Lemma 2 one can apply the control action

u = ū−Kz∗ (33)

with z∗ selected by minimizing a suitable cost function, e.g.,

z∗ = argmin
z∈ConvexHull(ẑUP

l , l∈H)

zTPz (34)

for some appropriate weighting matrix P (e.g., the solution
to the Riccati equation associated to the weighting matrices
Q and R used to design the feedback gain K in an LQR
sense).

V. EXAMPLE

Consider the nonlinear discrete-time system

x+ =
[
1 0.1
0 1

]
x+

[√
|x1|
60
0

]
+
[
0.1
0.1

]
u+

[
0

0.1

]
w

with the plant noise w bounded by |w| ≤ 0.2.
We consider three sensors defined by

C1,2,3 = {
[
1 0

]
,
[
0.5 1

]
,
[
0.75 0.25

]
}

and affected by noises bounded by

η̄1,2,3 = 0.1, η̄F1,2,3 = 1.

The poles of A− LiCi,

p1,2,3 = {
[
0.93 0.80

]
,
[
0.95 0.85

]
,
[
0.96 0.80

]
}

are assigned through gain matrices

L1,2,3 = {
[
0.27 0.14

]T
,
[
0.10 0.15

]T
,
[
0.28 0.11

]T }.
The update matrices in (9) are computed as M1,2,3 =
A−1L1,2,3.

Using tuning parameters Q =
[
0.10 0

0 6.32

]
, R = 7.26,

we select K =
[
0.11 1

]
as the optimal feedback gain (in

the LQR sense) which will be used to construct the closed
loop system, as in (12).

Using the fact that
∣∣∣√|b| −√|a|∣∣∣ ≤√|b− a| is valid for

any a, b ∈ IR one can bound the tracking error nonlinear

component, as |γ(z, x̄)| ≤ δ(|z|) with δ(z) ,

[√
|z1|
60
0

]
respecting Assumption 2.

Since δ(z) does not depend on the values taken by x̄ ∈ X̄
it follows that, in the sense of Remark 2, we can maximize
the range of available references to X̄ = X̄max with X̄max

defined as in (26). Using this function δ(z) in (17) we can
apply Proposition 1 to obtain, for the augmented system (13),
the invariant set (20) where the fixed point

bI = 10−2 · [0.4 0.5 13.3 19.8 3.9 13.9 7.7 12.4]T

is computed by iteration of mapping (19).
Using the projection of the set on the z axis, Sz , the

healthy and faulty residual sets (25) are constructed for the
three sensors.

In Figure 3 the maximal reference set X̄max is depicted.
An ideal reference r (continuous blue line) is provided which
will be tracked by the reference governor through a receding
horizon procedure with τ = 5 prediction steps as in (27).
The result is the reference pair (ū, x̄) (x̄ shown in dashed
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(a) convex sum selection (b) single sensor selection

Fig. 2: Scenario of functioning for multisensor scheme (blue
for reference, red for state estimations) – the first component
of the state.

blue line) which will be provided to the plant for reference
tracking.

A scenario of functioning is depicted in Figure 2. For
comparison purposes, the strategy described in (33)–(34)
(with the choice of P mentioned after (34)), is shown in
Figure 2(a), and a switching strategy that also applies the
control (33), but with z∗ being the minimizer of the cost
function zTPz over z ∈ {ẑUP1 , . . . , ẑUPN }, is shown in
Figure 2(b). In both cases one can see that the reference
is accurately followed, even under a fault occurring in the
2nd sensor at step k = 90 (also shown are the estimates
of x1 based on the second sensor, which fails at k = 90
and later recovers at k = 150). Moreover, even if not
visually noticed in this comparison, it is to be expected that
the enhanced command design (33)–(34) will have superior
performance, in the sense that it minimizes the same cost
function over a larger set of values. In effect, an integral
cost over the simulation window of 15.159 was reached for
the first method and 25.318 for the second one.

VI. CONCLUSIONS

The paper has presented a fault tolerant control scheme
based on a reconfigurable control action for a class of
nonlinear multisensor systems. The detection of abrupt faults
was realized through set membership testing. The reference
followed by the system was obtained through a reference
governor which employs a receding horizon technique in
order to determine a reference which enables the fault de-
tection mechanism. The construction of the feedback control
law was redesigned to take into account the information
provided by all the healthy sensors. The nonlinear case
presents interesting challenges, including the tightening of
the invariant sets which allows fault detection and the effect
of the structure of the optimization problems on real-time
performance.
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